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Abstract

In this study\ the transient response of an elastic strip subjected to dynamic in!plane loadings on the
surface is investigated in detail[ One of the objectives of this study is to develop an e}ective analytical
method for determining transient solutions in a strip[ By applying Laplace transform\ the analytical solution
in the transformed domain is derived and expressed in matrix form[ The solution is then decomposed into
in_nite wave groups in which the multiple re~ected waves with the same re~ection are involved[ Each multi!
re~ected wave can be identi_ed by a coding method and be veri_ed by the theory of generalized ray[ The
inverse transform is performed by using the well!known Cagniard method[ The transient solutions in time
domain for stresses and displacements are expressed in a closed form and are discussed in detail by an
example[ The experimental results show that the early time transient responses of displacements on the
surface agree very well with the numerical calculations based on the theoretical solutions[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

The dynamic transient responses for a plate subjected to dynamic loading are of great interest
in many engineering applications[ Analysis of transient elastic waves generated by dynamic loading
in a plate has been investigated widely in the literature[ The ~exural waves and extensional waves
in a thin plate were analyzed by the classical plate theory "Miklowitz\ 0859\ 0851#[ Weaver and
Pao "0871# calculated the transient response of an axisymmetric point source acting on a thick
plate by using the theory of normal modes[ Santosa and Pao "0878# calculated the asymmetric
one[ The normal mode method is e}ective in determining the long time response at a receiver
which is located a long distance from the source\ but the method is ine.cient in determining the
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early time response at a receiver relatively close to the source[ The early time response in the plate
can be determined exactly by considering the propagation of stress waves[

The propagation of stress waves through an unbounded medium is not a di.cult subject[ If a
boundary is introduced\ however\ re~ected waves will be generated from the free surface\ making
the problem more complicated[ The classical analysis in this area was _rst proposed by Lamb
"0893#^ he considered a half!space subjected to point and line loads on the surface[ Since this early
analysis of Lamb\ a great many contributions have appeared\ pertaining to what is commonly
referred to as Lamb|s problem[ De Hoop "0850# and Cagniard "0828# proposed a powerful and
elegantly simple method that is known as the CagniardÐde Hoop technique for inverting transforms
in a wide range of elastodynamic wave propagation problems[ Spancer "0859# presented a method
to predict the response of an elastic system that consists of two half spaces perfectly bounded
together along a plane interface[ He showed that the integral representation of re~ected and
transmission waves can be obtained from source waves by suitable operation[ This concept is the
foundation of the generalized ray[ The theory of generalized ray was reviewed by Pao and Gajewski
"0868#[ To analyze the transient response of a plate\ the solution was decomposed into wave
components called {rays|[ Each ray can be evaluated exactly by Cagniard|s method[ Although the
number of waves in the plate is in_nite\ the solution is exact up to the arrival time of the next ray[
The ray solution is suitable for calculating the early time response[ The numerical results of various
types of point source in a plate analyzed by the generalized ray method were given by Ceranoglu
and Pao "0870#[

Various modi_ed methods were presented to obtain the transient solutions of a plate[ Mencher
"0842# expanded the solution of a symmetric plate problem into a series of exponential functions
and each term representing a generalized ray[ Knopo} "0847# and Davids "0848# used a similar
expanding procedure to obtain the ray solutions for both symmetric and antisymmetric plate
problems[ They expanded the denominator in the expression of solution into a series of exponential
functions formally but only the _rst few terms were considered[ On the other hand\ Shmuely "0863#
and Norwood "0864# derived a solution by a ray tracing method which was greatly simpli_ed by
matrix notation[ Whenever these waves reach any one of the two surfaces\ a half!space sort of
solution is added to the solution[ The _nal solution thus consists of in_nitely many contributions\
each of which corresponds to a re~ection from one of the surfaces[

Because of the di.culty in analyzing the transient response of an in_nite number of re~ected
waves in a strip\ only very few papers used the transient analysis to study the phenomena of the
wave propagation in a strip[ For transient waves\ one could in principle obtain the solution by
superimposing harmonic waves of all frequencies and all modes[ This approach\ however\ is not
practical and a more direct approach should be employed to study the transient waves[ In this
study\ a matrix expansion method is proposed and will be demonstrated as an e.cient methodology
to solve the problem[ By applying the Laplace transform\ the stress vector in the strip is expressed
in terms of a matrix form in transform domain[ From the boundary conditions at lateral surfaces\
a system of equations with a coe.cient matrix is derived[ By rewriting the coe.cient matrix in a
special form which consists of the diagonal\ lower and upper triangular parts and then expanding
the inversion of coe.cient matrix into a power matrix series\ the solution in transform domain
can be automatically decomposed into _nite wave groups in which the multiple re~ected waves
with the same re~ections are involved[ We found that the source function should be separated
before expanding the denominator into a series of rays[ The physical meaning of the matrix
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representation will be clear under this arrangement[ The connection of the matrix formulation and
generalized rays is also discussed in this study[ The solution can be expressed in a summation form
by encoding each individual ray and then each ray can be easily traced by the coding[ The inverse
Laplace transform is achieved by Cagniard|s method[ All the waves are summed to construct the
complete transient solution in time domain[ Numerical examples are given when the applied
loading is a point vertical force with a step time dependence[ Experimental data of transient
responses for displacements on lateral surfaces are compared with the theoretical predictions\ and
good agreement is obtained[

1[ Statements of the problem

Consider an in_nite strip with thickness h subjected to arbitrarily distributed dynamic forces
applied on the top and lower surfaces[ A Cartesian coordinate system is oriented so that the y!axis
is normal to the surfaces as shown in Fig[ 0[ Only in!plane motion in the xÐy plane is considered
in this study[ The top surface lies in the plane y � 9 and the lower one in y � −h[ The boundary
conditions on the top and lower surfaces of the problem can be written as follows

6
sxy"x\ 9\ t# � sxy9

"x\ t#

syy"x\ 9\ t# � syy9
"x\ t#

−� ³ x ³ �\ "0a#

6
sxy"x\ −h\ t# � sxyh

"x\ t#

syy"x\ −h\ t# � syyh
"x\ t#

−� ³ x ³ �\ "0b#

where sxy9
"x\ t#\ [ [ [ \ syyh

"x\ t# are applied tractions on the surfaces[
The two!dimensional elastodynamic equations without body forces can be expressed in terms

of two scalar potentials f and c as follows

Fig[ 0[ Con_guration and coordinate systems of a strip[
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where

sL �X
r

l¦1m
�

0
cL

\ sT �X
r

m
�

0
cT

[

Here r is the mass density of the material\ l and m are Lame�|s constants\ sL and sT are the slownesses
of longitudinal and shear waves\ respectively[ The f and c are referred to as the p! and s!wave
potentials[ Displacements are derived from these potentials according to

u �
1f

1x
¦

1c

1y
\ "2a#

v �
1f

1y
−

1c

1x
\ "2b#

where u and v are the displacements in the x! and y!directions\ respectively\ The stresses can be
expressed in terms of the two potentials by means of Hooke|s law[ The relevant components of
the stress tensor can be written as

sxx � l 0
11f

1x1
¦

11f

1y11¦1m 0
11f

1x1
¦

11c

1x 1y1\ "3a#

syy � l 0
11f

1x1
¦

11f

1y11¦1m 0
11f

1y1
−

11c

1x 1y1\ "3b#

sxy � m 01
11f

1x 1y
¦

11c

1y1
−

11c

1x11[ "3c#

The aforementioned problem will be solved by the application of integral transformation[ The
one!sided Laplace transform over time t and the bilateral Laplace transform on the spatial variable
x for a function f is de_ned as

f¹ �"y^ h\ p# � g
�

−�

e−phx g
�

−9

f"x\ y\ t# e−pt dt dx\

where p is a positive real number\ large enough to ensure the convergence of the integral and h

being a complex variable[ For applying Cagniard|s method of Laplace inversion\ it is convenient
to take ph as the transform parameter of x[

The equations of motion in the Laplace transform domain are two ordinary di}erential equations
with the following general solutions]
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f¹ �"y^ p\ h# � f¹ �d"p\ h# epgLy¦f¹ �u"p\ h# e−pgLy\ "4a#

c¹ �"y^ p\ h# � c¹ �d"p\ h# epgTy¦c¹ �u"p\ h# e−pgTy\ "4b#

where gL � zs1
L−h1 and gT � zs1

T−h1[ The condition Re gL − 9 "Re gT − 9# is satis_ed by pro!
viding branch cut along sL ¾ =Re h= ¾ �"sT ¾ =Re h= ¾ �#\ Im h � 9 and choosing the branch of
positive square root[ The coe.cients expressed in "4a# and "4b# with subscript u denote the waves
propagating along ¦y direction and those with subscript d are the waves propagating along −y
direction[ The unknown coe.cients f¹ �u\ c¹ �u\ f¹ �d\ and c¹ �d\ can be determined by boundary conditions[

The displacement and stress _elds expressed in the transform domain are

u¹� � p"hf¹ �d epgLy¦gTc¹ �d epgTy#¦p"hf¹ �u e−pgLy−gTc¹ �u epgTy#\ "5a#

v¹� � p"gLf¹ �d epgLy−hc¹ �d epgTy#¦p"−gLf¹ �u e−pgLy−hc¹ �u epgLy#\ "5b#

s¹�xx � mp1 ð"s1
T−1s1

L¦1h1#f¹ �d epgLy¦1hgTc¹ �d epgTyŁ

¦mp1 ð"s1
T−1s1

L¦1h1#f¹ �u e−pgLy−1hgTc¹ �u e−pgTyŁ\ "5c#

s¹�yy � mp1 ð"s1
T−1h1#f¹ �d epgLy−1hgTc¹ �d epgTyŁ¦mp1 ð"s1

T−1h1#f¹ �u e−pgLy¦1hgTc¹ �u e−pgTyŁ\ "5d#

s¹�xy � mp1 ð1hgLf¹ �d epgLy¦"s1
T−1h1#c¹ �d epgTyŁ¦mp1 ð−1hgLf¹ �u e−pgLy¦"s1

T−1h1#c¹ �u e−pgTyŁ[ "5e#

The displacement and stress _elds are separated into two parts] one is contributed from the upward
waves and the other is from the downward waves[ The coe.cients of f¹ �u\ c¹ �u\ f¹ �d\ and c¹ �d\ in this
expression are called the receiver functions by the theory of generalized ray[

For convenience\ we de_ne the traction vector on the y plane as

t¼"y# 0 0
s¹�yy"y^ p\ h#

s¹�xy"y^ p\ h#1[ "6#

If we rearrange the unknown coe.cients as two vectors nu and nd for the up!going and down!
going potentials\ respectively\ then we have\

n¼u � 0
f¹ �u"p\ h#

c¹ �u"p\ h#1\ "7a#

and

n¼d � 0
f¹ �d"p\ h#

c¹ �d"p\ h#1[ "7b#

From "5d# and "5e#\ the traction vector t¼"y# becomes

t¼"y# � Md"y#n¼d¦Mu"y#n¼u\ "8#

where the 1×1 matrix Mu and Md relate the up!going waves and down!going waves to the traction
vector\ and
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Md"y# � mp1 $
"s1

T−1h1# epgLy −1hgT epgTy

1hgL epgLy "s1
T−1h1# epgTy%\ "09a#

Mu"y# � mp1 $
"s1

T−1h1# e−pgLy 1hgT e−pgTy

−1hgL e−pgLy "s1
T−1h1# e−pgTy%[ "09b#

2[ Transient solutions in the transform domain

In this section\ the method of constructing the solution in the Laplace transform domain is
explained in detail[ The solution is expressed as an in_nite series of matrix in such a way that each
term has its physical meaning and can be identi_ed by the theory of generalized ray[

The solution for the problem described in the previous section can be obtained by determining
the unknown coe.cient vectors n¼d and n¼u from the boundary conditions in the transform domain[
The boundary conditions described in "0# expressed in the Laplace transform domain are denoted
as t¼0 and t¼1 for top and lower surface\ respectively\ where

t¼0 � 0
s¹�yy"9^ p\ h#

s¹�xy"9^ p\ h#1\ "00a#

and

t¼1 � 0
s¹�yy"−h^ p\ h#

s¹�xy"−h^ p\ h#1[ "00b#

With aids of "8#\ the as yet unknown vectors n¼d and n¼u in "7a# and "7b# can be determined from
the boundary conditions at y � 9 and y � −h\ which give two matrix equations as

&
Md"9# * Mu"9#
============ * ============
Md"−h#*Mu"−h#' 2

n¼d
====
n¼u 3� 2

t¼0
====
t¼1 3\ "01#

or in a more compact form\

Mn¼ � t¼\ "02#

where the unknown coe.cients n¼d and n¼u are stacked up to form the vector n¼ and the boundary
traction vector t¼ are formed of t¼0 and t¼1[ The stacked matrix equation as shown in "02# can be
solved directly by means of multiplying both sides of the matrix equation by inverting matrix of
coe.cient matrix or by Cramer|s rules\

n¼ � M−0t¼[ "03#

With the Laplace transform solution at hand\ we should perform the inverse transform to get the
transient solution in time domain[ The inversion of Laplace transform usually involves a sum!
mation of residues which are in_nite in number\ hence\ the accuracy of the _nal answer depends
on the number of terms taken in the series[ As an alternative way to solve the problem\ the inverse
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transform can be also accomplished with Cagniard|s method by expanding the denominator of
the coe.cients f¹ �u\ f¹ �d\ c¹ �u\ and c¹ �d into a series of the exponential components but only the _rst
few terms were constructed in the formal expansion proposed by Mencher "0842#[ Each term in
the series is corresponding to a generalized ray[ We will proposed a new methodology to construct
the solution of the problem in a more compact form in Section 2[0[

2[0[ New methodolo`y in the matrix formulation

We rewrite the coe.cient matrix M in "02# to an alternative form

M � D¦L¦U � DðI¦D−0"L¦U#Ł\ "04#

where the matrix D\ L\ U are the diagonal\ lower triangle\ and upper triangle parts of the coe.cient
matrix M and are expressed as follows

D � &
Md"9#* 9
==========* ============

9 *Mu"−h#'\ L � &
9 * 9

============ *===
Md"−h#* 9 '\ U � &

9 *Mu"9#
===* ========
9 * 9 '[ "05#

The unknown coe.cient vector n¼ is then expressed in the following form

n¼ � ðI¦D−0"L¦U#Ł−0"D−0t¼# � ðI−RŁ−0s¼\ "06#

in which

R � −D−0"L¦U#\ "07#

and

s¼ � D−0t¼[ "08#

The vector s¼ is expressed in the following form

s¼ � 0
s¼d

s¼u1� 0
M−0

d "9#t¼0

M−0
u "−h#t¼11[ "19#

The matrix R is represented as

R � &
9 *Rd
====*====
Ru* 9 '\

where

Rd � −M−0
d "9#Mu"9# � $

Rpp Rsp

Rps Rss%\ "10a#

and
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Ru � −M−0
u "−h#Md"−h# � $

Rpp e−1pgLh R sp e−p"gL¦gT#h

Rps e−p"gL¦gT#h R ss e−1pgTh %[ "10b#

The elements in matrix Rd and Ru are

Rpp � R ss � Rpp � Rss � ð3h1gLgT−"s1
T−1h1#1Ł:R"h#\

Rps � −Rps � −3hgL"s1
T−1h1#:R"h#\

R sp � −Rsp � 3hgT"s1
T−1h1#:R"h#\ "11#

and

R"h# � ð"s1
T−1h1#1¦3h1gLgTŁ\ "11#

in which R"h# is the well!known Rayleigh wave equation[ The elements of matrix R are exactly the
same as the re~ection coe.cients for plane waves interaction with traction free boundary with
phase changes[

By expanding the matrix "I−R#−0 into a power series of matrix R\ the unknown coe.cient
vector n¼ can be rewritten as

n¼ �"I−R#−0s¼ � s
�

i�9

Ris¼\ "12#

where s¼ and R are given in "19# and "10#[ It is noted that the sum of absolute value of all elements
in each row of matrix R is less than or equal to unity\ hence all the eigenvalues of matrix R are
allocated in a unit circle in the complex plane and the convergence of the series is expected[ The
expansion is applicable to practical problems since only the _rst few terms out of the in_nite sum
are relevant for any given time of interest[

In "12#\ the matrix R characterizes the multiple re~ections of all waves within the strip\ and the
vector s¼ speci_es the source waves generated by the applied traction at two lateral surfaces[ The
physical meaning of the R matrix will be clear by considering the characteristic of the waves
interacting with the a planar boundary\ which will be discussed next[

2[1[ Waves in the strip

The transient wave _eld in a strip can be decomposed into many groups of waves in a stepwise
fashion by disregarding the top surface y � 9 and lower surface y � −h in turn[ The physical
meaning of solution expressed in "12# will be clear after the derivation by the following approach[
The traction applied on the top surface of the strip will be considered _rst and the solution for the
traction applied on the lower surface can be constructed in a similar manner[ The complete solution
of the problem is obtained by superposing of all groups of waves which are generated by the
tractions applied on both surfaces[

A case in which the top surface is loaded and the lower surface remains free is considered _rst[
To begin with\ the problem related to a half!plane which is subjected to the same load as that
applied to the top surface should be worked out[ The applied traction on the top surface generates
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a set of waves propagating along the −y direction[ The wave potentials n¼d9 representing the wave
in the semi!in_nite domain can be obtained from the boundary condition at y � 9

n¼d9 � M−0
d "9#t¼0 0 s¼d\ "13#

where the subscript 9 indicates the zeroth order of re~ection and n¼d9 is denoted as s¼d hereinafter to
represent the source waves produced by the applied force[ The source wave potential s¼d can be
considered as the incident waves to the lower surface y � −h and a group of waves represented
by n¼u0 will be induced by applying an opposite traction on the lower surface[ The traction!free
boundary condition at y � −h yields

Md"−h#s¼d¦Mu"−h#n¼u0 � 9\ "14#

then n¼u0 is expressed in terms of the incident wave s¼d by

n¼u0 � Rus¼d\ "15#

here Ru is exactly the same as that given in "10b#[ The physical meaning of matrix Ru now makes
clear that each element of the matrix represents a re~ection coe.cient of the lower surface of the
strip with phase change[

The matrix Ru characterizes the transfer relation between the incident and the re~ected wave
potentials[ If there is a pressure wave propagating toward the free surface y � −h\ the coe.cient
of re~ected pressure waves can be obtained immediately by multiplying the coe.cient of incident
pressure waves with ðRuŁ00[ The coe.cient of the re~ected shear wave can be obtained from the
incident coe.cient by multiplying ðRuŁ01[ The two re~ected waves generated from the incident
pressure wave are denoted as pp! and ps!waves[ Similarly\ we denote re~ected sp! and ss!waves from
incident shear waves and the coe.cients of these re~ected waves can be obtained by multiplying the
coe.cient of incident shear wave with ðRuŁ10 and ðRuŁ11\ respectively[

After some later time\ these re~ected waves "i[e[ n¼u0# will reach the top surface and another group
of waves n¼d1 is generated to cancel the traction produced by n¼u0 at y � 9\ we have

Md"9#n¼d1¦Mu"9#n¼u0 � 9\ "16#

and n¼d1 is given by

n¼d1 � Rdn¼u0 � RdRus¼d\ "17#

where Rd is given in "10a#[ Hence\ any group of re~ected waves propagating downward can be
found by simply multiplying the re~ection matrix Rd with the incident wave n¼u[

By satisfying the two boundary conditions alternatively\ the waves in the strip are decomposed
into many groups of waves with di}erent re~ection orders[ There are in_nitely many groups of
waves in the strip that will be generated[ A synthesis of all the wave groups leads to the total wave
_eld in the strip[ The complete solution for the traction applied on the top surface is then given by

n¼d � s
�

i�9

"RdRu#is¼d\ "18a#

and
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n¼u � s
�

i�9

Ru"RdRu#is¼d[ "18b#

Each of the in_nitely many terms expressed in "18#\ except the _rst one\ i[e[ s¼d\ is due to applying
an external load in order to satisfy the traction free condition at surfaces y � 9 and y � −h[ For
any given time of interest\ only a few terms out of the in_nite sum are needed and the higher order
terms in the series begin to a}ect the solution after longer periods of time[ The solution can be
rewritten in a more concise form as

2
n¼d
====
n¼u 3� s

�

i�9 &
9 *Rd
====*====
Ru* 9 '

i

2
s¼d
====
9 3[

The solution for the tractions applied on the lower surface can be derived in a similar manner[ The
complete solution of the strip for applying traction on both surfaces can then be constructed easily
and expressed as follows

2
n¼d
====
n¼u 3� s

�

i�9 &
9 *Rd
====*====
Ru* 9 '

i

2
s¼d
====
s¼u 3� s

�

i�9

Ris¼[

The solution is exactly the same as that given in "12#[ The term Ris¼ represents a group of waves
which is re~ected by both surfaces of the strip i times[ It is worthy to note that each wave diverges
in the long!time limit but the sum of all the waves in each group goes to a static value when the
applied force tends to a static force as time increases[ Each wave within a group of the same
re~ection order can be identi_ed by the generalized ray method[

It is shown in this method that whenever waves reach any one of the two surfaces\ a half!space
kind of solution is added to them[ The complete solution consists of the sum of in_nitely many
contributions\ each of which corresponds to a group of re~ection waves generated from one of the
surfaces[ Since each term in the in_nite sum is derived from a half!space kind of solution\ hence
Cagniard|s method of Laplace inversion can be applied directly[ Although the solution for waves
in a strip can be constructed in Section 2[1\ the method provided in Section 2[0 is more simple and
elegant[

2[2[ The ray tracin` technique

Figure 1 shows that the total response of a strip with a dynamic loading applied on its top
surface is decomposed into in_nite wave groups each containing many re~ected waves[ There are
1i¦0 waves in the ith group that re~ected i times between the top and lower surface of the strip[
Because of the mode conversion\ we denote each re~ected wave by attaching the mode of the
source wave to the mode of the re~ected wave\ such as pps or pspspp\ to distinguish the mode
conversion at each step of re~ection as shown in Fig[ 1[ The waves in the ith group are coded by
i¦0 letters\ and each letter can be either a p or s mode[ The last letter of this coding system
represents the propagating mode of the wave and the remainder designates the history of this
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Fig[ 1[ The classi_cation of re~ected waves in a strip[

wave[ We can distinguish all the waves and sum them up to obtain the total response for the
numerical calculation with aids of the coding system[

Each wave can be represented by a set of number "i\ j\ k# in which the _rst number i ranging
from 9 to in_nity is the number of re~ection for this wave\ the second number j ranging from 9Ð
1i−0 stores the historical information of the wave and the third number k indicates the mode of
the wave propagating in the strip[ The set of number "i\ j\ k# can be transformed to the coding
system in Fig[ 1[ The complete solution is the sum of all the waves generated by the sources[ We
sort the potentials\ f¹ � "k � 9# or c¹ � "k � 0#\ into a series EÞ� which mainly contains two parts\

EÞ�"p\ h# � EÞ�¦¦EÞ�−\ "29#

in which

EÞ�2"p\ h# � s
�

i�9

s
1i−0

j�9

s
0

k�9

EÞ�2"i\j\k#\ "20#

where

EÞ�2"i\j\k# � t
i

l�0

Gl"h#S2"p\ h# e−pð"mgL¦ngT#h2"−0#igT\LyŁ\ "21#

the sign in the subscript is chosen positive when the source is on the top surface and minus when
the source is on the lower surface[ S"p\ h# denotes the source function which is chosen from the
elements of source vector s¼ in "19# and is dependent on the source of the corresponding wave[ The
symbol gT\L\ which related to the propagating mode of the wave\ is selected as gT when k � 0\ and
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as gL when k � 9[ The m and n in the phase function as well as the product of re~ection coe.cients
PGl"h# can be determined by tracing the origin of the wave and can be easily found by multiplying
the corresponding generalized re~ection coe.cient with phase shift ðRŁ expressed in "10# at each
step of re~ection[

So far\ we have constructed the solution of displacement potentials in the transform domain with
matrix formula[ The displacements and stresses can be obtained by substituting the displacement
potential into "5#[ The remaining task is to evaluate the inverse transform of these expressions[
The inverse transform is based on the well!known Cagniard method[ The details of Cagniard|s
method are discussed by Cagniard "0828# and Pao and Gajewski "0866# and will be illustrated by
an example indicated in the next section[

3[ Transient solution for an in_nite strip subjected to a normal loading

We have formulated the two!dimensional solution in Laplace transform domain for a strip
subjected to a distributed loading with arbitrary time dependence in the previous section[ Now we
consider in detail for the problem of a vertical concentrated force with arbitrary time dependence
acting on the top surface at x � 9\ y � 9[ The boundary conditions on top and lower surfaces are
expressed as

6
sxy"x\ 9\ t# � 9

syy"x\ 9\ t# � s9d"x# f"t# 6
sxy"x\ −h\ t# � 9

syy"x\ −h\ t# � 9
for −� ¾ x ¾ �[ "22#

Since there are no sources on the lower surface\ only the downward waves will be generated from
the applied loading[ For convenience\ the source function can be factored into two functions\ one
function depends on h and the other on p as follows

s¼d � M−0
d "9#t¼0 � LÞ"p# 0

Sp

Ss1\ s¼u � 9 "23#

where

LÞ"p# �
s9

m

f¹"p#

p1
\ "23a#

and

0
Sp

Ss1�
0

R"h# 0
−"s1

T−1h1#

1hgL 1[ "23b#

To perform Cagniard|s method\ each individual wave can be rewritten as follows

EÞ�−"i\j\k# "p\ h# � LÞ"p#KÞ�−"i\j\k# "h# e−pð"mgL¦ngT#h−"−0#igkyŁ\ "24#

where
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KÞ�−"i\j\k# "h# � t
i

l�0

Gl"h#S−"h#[

The inverse formula for the two!sided Laplace transform of this general expression leads to

EÞ−"i\j\k# "p# �
pLÞ"p#
1pi g

h0¦i�

h0−i�

KÞ�−"i\j\k# "h# e−pð"mgL¦ngT#h−"−0#igky−hxŁ dh[ "25#

The overbar symbol is used to denote the transform on time t[
The exact transient solution in time domain can then be found by the application of Cagniard|s

method[ The idea of the method is to deform the path of integration in the complex h!plane along
a new path in such a manner that the inverse Laplace transform of the integral along the new path
of integration can be obtained by inspection[ The desired path of integration in the complex h!
plane is de_ned by the following equation

t � ð"mgL¦ngT#h−"−0#igT\Ly−hxŁ[ "26#

The root of the equation for p!wave "k � 9# is denoted as hp and for s!wave "k � 0# as hs[ To
obtain the desired path\ it is convenient to _nd the root of "26# numerically by applying the
modi_ed Newton|s method[ Excellent numerical solution can be found by four or _ve iterations[

The arrival time of each multi!re~ected wave is determined from the stationary value of t\ which
is a function of h[ The global stationary value for t is determined by the condition

dt
dh

� 9[ "27#

From "26# and "27#\ the arrival time of the multi!re~ected wave can be determined numerically[
The corresponding arrival time is denoted as tp and ts for pressure and shear wave\ respectively[ In
addition\ there are branch points in the complex h plane[ To deform the Bromwich contour into
Cagniard|s path\ an additional head wave will be induced when Cagniard|s path encloses the
branch point[ An additional contribution will be generated from the deformed path around the
branch cut[ The contribution of head wave acts between th and ts\ where th denote the arrival time
of the head wave that is found by substituting h with −sL in "26# when Cagniard|s path encloses
the branch point −sL[

Comparing "25# with the Laplace transform formulation\ the inverse Laplace transform can be
achieved by using the convolution theorem for Laplace transform[ For example\ the transient
solution for a p!wave typed potential E−"i\j\k# "k � 9# can be expressed as follows

E−"i\j\9# "x\ y\ t# �
0
p

L−0"pLÞ"p## ( Im 6KÞ�−"i\j\9#

dh

dt
H"t−tp#7h�hp

\ "28#

where H"t−tp# is the unit step time function[ Finally\ transient solutions for displacements and
stresses can be found and are expressed as follows]
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u �
0
p

L−0"p1LÞ"p## ( s
�

i�9

s
1i−0

j�9

F

G

G

G

G

G

G

G

f

Im 6hLKÞ�−"i\j\9#

dhp

dt 7H"t−tp#

¦Im 6"−0#igTKÞ�−"i\j\0#

dhs

dt 7H"t−ts#

¦Im 6"−0#igTKÞ�−"i\j\0#

dhs

dt 7H"hs¦sL#H"t−th#H"ts−t#

J

G

G

G

G

G

G

G

j

\

"39a#

v �
0
p

L−0"p1LÞ"p## ( s
�

i�9

s
1i−0

j�9

F

G

G

G

G

G

G

G

f

Im 6"−0#igLKÞ�−"i\j\9#

dhp

dt 7H"t−tp#

¦Im 6−hsKÞ�−"i\j\0#

dhs

dt 7H"t−ts#

¦Im 6−hsKÞ�−"i\j\0#

dhs

dt 7H"hh¦sL#H"t−th#H"ts−t#

J

G

G

G

G

G

G

G

j

\

"39b#

sxx �
0
p

L−0"mp2LÞ"p##

( s
�

i�9

s
1i−0

j�9

F

G

G

G

G

G

G

G

f

Im 6"s1
T−1s1

L−1h1
p#KÞ�−"i\j\9#

dhp

dt 7H"t−tp#

¦Im 6"−0#i1hsgTKÞ�−"i\j\0#

dhs

dt 7H"t−ts#

¦Im 6"−0#i1hsgTKÞ�−"i\j\0#

dhs

dt 7H"hs¦sL#H"t−th#H"ts−t#

J

G

G

G

G

G

G

G
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\ "39c#

syy �
0
p

L−0"mp2LÞ"p##

( s
�

i�9

s
1i−0

j�9

F

G

G

G

G

G
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G

f

Im 6"s1
T−1h1

p#KÞ�−"i\j\9#

dhp

dt 7H"t−tp#

¦Im 6−"−0#i1hsgTKÞ�−"i\j\0#

dhs

dt 7H"t−ts#

¦Im 6−"−0#i1hsgTKÞ�−"i\j\0#

dhs

dt 7H"hs¦sL#H"t−th#H"ts−t#

J

G

G

G

G

G

G

G

j

\ "39d#

sxy �
0
p

L−0"mp2LÞ"p##
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( s
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i�9

s
1i−0

j�9
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G

G

G
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G

f

Im 6"−0#i1hpgTKÞ�−"i\j\9#

dhp

dt 7H"t−tp#

¦Im 6"s1
T−1h1

s #KÞ�−"i\j\0#

dhs

dt 7H"t−ts#
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G
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G

G

G

j

\ "39e#

where the symbol L−0"=# denotes the inverse Laplace transform in t\ and ( means the convolution
of two functions with respect to time t[

4[ Numerical and experimental results

The transient response of a strip subjected to a dynamic concentrated normal force on the top
surface is formulated in detail in the previous section[ In this section\ the source time function f"t#
is selected as a Heaviside function for numerical calculations and experimental measurements[ We
set\ in "22#\

f"t# � H"t#\

where H"t# is the step function in time\ which results

L"p# �
s9

m

0

p2
[

The wave front for the early time\ depicted in Fig[ 2\ is constructed by connecting all the points
of the same arrival time with aids of "26# and "27# for each multi!re~ected wave in the strip[ Figure
2 shows the wave fronts in the strip at di}erent normalized time\ t:hsL � 0[94\ 1[0\ 2[04\ 3[1 and
4[14[ The Poisson|s ratio n � 9[23 is chosen so that the p!wave is about twice that of the speed of
the s!wave[ The cylindrical p! and s!waves are generated by the point force[ The planar head wave
which is propagating along the free surface with p!wave speed and then emerging into the strip
with s!wave speed is also generated in the mean time[ As the time increases\ the number of waves
in the strip increases dramatically because of the mode conversion as the wave interacts with the
boundary[ Note that only waves without mode conversions "i[e[ p!wave\ s!wave\ pp!wave\ ss!wave\
etc[# are cylindrical waves[ The wave front of a wave with mode conversion " for example\ psp!
wave# is no longer cylindrical[ The head waves\ which are straight lines\ are also shown in the
_gure[

The transient responses of the strip are determined by summing all the contribution of re~ected
waves and the solution is exact up to the arrival of the next wave[ There are at most twelve
groups of waves "about 0499 waves# are considered for the numerical calculation of stresses and
displacements[ The time history of the transient stress syy at the epicenter point "9\ −h:1#\ that
oscillates periodically with slight damping at a later time\ is shown in Fig[ 3[ The responses of
stresses syy\ sxx and sxy at "h\ −h:1# are shown in Figs 4Ð6[ It is worth noting that the magnitude
of the shear stress sxy is much larger than that of normal stresses syy and sxx at "h\ −h:1#\ and the
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Fig[ 2[ Wave fronts for the early time response of a strip subjected to a concentrated loading applied at the top surface
"n � 9[23#[

magnitude of normal stresses are nearly zero[ This phenomenon can also be expected from the
static analysis[ The stress _eld shows a square root singularity at the arrivals of all the re~ected
waves because of the Heaviside source time function[ The singularity can be reduced by introducing
the rounded!shoulder Heaviside source time function as shown in Fig[ 7[ The arising time of the
source time function in each case is chosen as 1D � 0[9\ 9[4 and 9[0[ We can see that when the
arising time is larger\ the waveform is smoother[

It is interesting to note that each term in "39# diverges as time tends to in_nity but the sum goes
to a static value if the applied force is Heaviside or rounded!shoulder Heaviside time dependence[
Furthermore\ the transient response can be decomposed into many convergent subgroups in which
the waves of the same number of re~ection are summed[ As an illustration\ the time history for
stress syy at "h\ −h:1# for the contribution from each group is plotted in Fig[ 8[ There are 1i¦0

waves in the ith group and the horizontal line denotes the corresponding static value of each group[
The static value can be obtained by using the Airy stress function and a similar scheme as in this
study[ We can see that each group of waves converge to the corresponding static value as time is
large[
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Fig[ 3[ The transient response of the normal stress syy at the epicenter[

Fig[ 4[ The transient response of the normal stress syy at the position "h\−9[4h#[
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Fig[ 5[ The transient response of the shear stress sxy at the position "h\ −9[4h#[

Fig[ 6[ The transient response of the normal stress sxx at the position "h\ −9[4h#[
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Fig[ 7[ The transient response of the normal stress syy at "h\ −9[4h# for the rounded shoulder Heaviside source function[

Fig[ 8[ The transient response of the normal stress syy for each group of waves at the position "h\ −9[4h#[
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Fig[ 09[ The vertical displacement on the top surface at di}erent location[

The numerical results of vertical displacements for top and lower surfaces at di}erent positions
due to applying Heaviside time dependent loading are shown in Figs 09 and 00\ respectively[ The
strongest motion of the top surface can be easily identi_ed as the Rayleigh surface wave arrives at
the material point[ However\ the Rayleigh surface wave on the lower surface does not induce
signi_cant response[ The discontinuity of the slope of the displacement is due to the arrival of
waves which carries singularity at the wave front[

The calculated displacement on the top surface based on the analytical solution in "39b# is com!
pared to the experimental measurement on a steel plate[ The density and elastic constants of steel are

r � 6899 Kg:m2\ E � 196[9 GPa\ n � 9[18[

The thin plate specimen with h � 2 cm is supported by a holding frame as shown in Fig[ 01[ The
dynamic loading is a step excitation concentrated force applied on the top surface of the plate[
The step loading can be generated from the brittle fracture of a pencil lead and the experimental
response is shown in Fig[ 02[ The experimental results of vertical displacements at di}erent
positions shown in Figs 03Ð04 are measured by an NBS conical transducer\ and recorded by an
oscilloscope "Lecroy 8209L#[ The agreements between the theoretical results and experimental
measurements are excellent\ which imply that the evaluation of the material constants by using the
transient wave theory may be possible[

5[ Conclusion

This paper presents a matrix expansion method for analyzing the transient waves in a strip
generated by dynamic loadings[ The unknown coe.cients of the wave potentials in Laplace
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Fig[ 00[ The vertical displacement on the lower surface of the strip[

Fig[ 01[ The experimental setup and dimension of the specimen[
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Fig[ 02[ The source time function produced by brittle fracture of pencil lead[

Fig[ 03[ The comparison between theoretical results "solid line# and experimental measurements "dashed line# of vertical
displacement at the top surface[
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Fig[ 04[ The comparison between theoretical results "solid line# and experimental measurements "dashed line# of the
vertical displacement at the lower surface[

transformed domain are determined from the boundary conditions at both surfaces of the strip[
By rewriting the coe.cient matrix M in a special form which consists of the diagonal\ lower and
upper triangular parts\ the inverse transformation is accomplished without evaluating the residues
by expanding "I−R#−0 into a power series of matrix R[ The term associated with Ri represents the
group of waves that is re~ected by the surfaces i times[ Since the matrix solution in "12# sorts the
group of waves in order\ only a few terms out of the in_nite sum are relevant for any given time
of interest[ Each component of the matrix solution could be identi_ed with the solution derived
by the theory of generalized ray[ The transient solution in time domain is accomplished by the
application of Cagniard|s method with a suitable coding of all the waves[ The analytic transient
results obtained in this study are exact and are expressed in a simple closed series\ each term
representing a physical transient wave[

In comparison with the ray expansion method proposed by Mencher "0842#\ Knopo} "0847#
and Davids "0848#\ the matrix method presented in this study can construct all waves in the strip
more concisely and easily[ Furthermore\ if the force is applied within the strip instead of the surface
of the strip\ the ray solution can also be obtained easily by changing the source vector s¼ accordingly
without resolving the problem[ The methodology provided in this study has already been suc!
cessfully extended to solve more complex types of problems\ which deal with the transient wave
propagation in layered medium and three!dimensional con_guration[

Numerical investigations of transient responses for displacements and stresses in the strip
subjected to a dynamic point force is discussed in detail[ Although the stress induced by each wave
is diverged as time tends to in_nity\ the total contribution from all the waves in one group is
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converged[ An experimental setup is established to measure the transient response of vertical
displacement on surfaces of a strip subjected to dynamic loadings with a step time dependence[
The agreements between the theoretical results and experimental measured responses are excellent\
which implies the possible application of the present study to inverse evaluation of the material
constants[
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